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Abstract

Recently, a new technique for unique non-iterative multi-exponential fitting of time domain NMR data was proposed. The

method was termed SLICINGLICING, because an intrinsic part of the method consisted of taking different parts (slices) of the original matrix

data and rearranging the slices into a three-way box of data. Subsequently, a directly calculated model of this box provided T2-
estimates and corresponding amplitudes. The most critical part of this method is the choice of how to slice the original data. In this

paper, a new general scheme for this slicing is proposed which (1) is shown to provide more accurate T2-estimates and (2) leads to a

significant speed improvement compared to earlier approaches. The method is called POWEROWERSLICINGLICING, because it takes slices of lag

2x (x ¼ 0; 1; . . . ;N ) where 2N 6 J=2 and J is the number of bins on the time axis. This approach ensures a reasonably high amount of

direct constraints and an appropriate representation of both short and long time decays in the decomposition.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Time domain NMR (TD-NMR) data are often ana-

lyzed using multi-exponential decomposition, which

applies non-linear and iterative exponential curve-fitting

algorithms to find the underlying pure exponentials.

Provided simultaneous analysis of several NMR trans-

verse relaxation curves we have recently described an
alternative non-iterative and rapid technique for curve

resolution namely the SLICINGLICING technique [1]. The

SLICINGLICING technique pseudo-upgrades the data to become

tri-linear (residual magnetization is described as a

function of two variables) which in turn facilitates some

unique advantages offered by application of so-called

tri-linear mathematical models. The method is based on

the fact that two different time ‘‘slices’’ of a given multi-
exponential decay curve consist of the same underlying

qualitative features (characteristic decay times), but in a

new linearly related combination of quantities (concen-

trations or magnitudes), utilizing the linear relationship

between exponentials
* Corresponding author. Fax: +45-3528-32-45.

E-mail address: se@kvl.dk (S.B. Engelsen).

1090-7807/03/$ - see front matter � 2003 Elsevier Science (USA). All rights

doi:10.1016/S1090-7807(03)00125-3
exp
�t
T2n

� �
/ exp

�t þ Dt
T2n

� �
: ð1Þ

In the simplest case a relaxation curve can be translated

one data point, called lag 1, and added in a new direction

called slab (slab 2), creating a data array (three-dimen-

sionalmatrix) with the dimension two in the slab direction

and the dimension N � 1 in the lag direction (see Fig. 1).

This (most basic) type of slicing corresponds to the ori-
ginal proposed DECRA slicing (direct exponential curve

resolution algorithm [2]). Mathematically, the slicing

operation can be described as follows. Let the matrix X

(I � J ) contain the elements xij where i refers to a sample

(row) and j to a time (column). Then measured data are

simply expressed as xij, i ¼ 1; . . . ; I ; j ¼ 1; . . . ; J . The

above three-dimensional array can be described by its

elements yikm, i ¼ 1; . . . ; I ; k ¼ 1; . . . ; J � 1; m ¼ 1; 2.
where yik1 ¼ xik and yik2 ¼ xiðkþ1Þ.

The idea of ‘‘cutting’’ data into a number of overlap-

ping slices has given rise to the name selected for this

approach: SLICINGLICING. If this operation is performed on a

series of multi-exponential decay curves, it is possible to

obtain a tri-linear structure that can be analyzed by, for

example, PARAllel FACtor analysis, PARAFAC [3].

The result of this procedure will ideally be exactly the
reserved.

mail to: se@kvl.dk


Table 1

T2-estimates for two randomly selected theoretical sets (30 samples,

0.5% noise level) of relaxation curves using DECRA and optimized

SLICINGLICING, respectively, as well as for the proposed method:

POWEROWERSLICINGLICING

T2 (ms) 20 40 80 160

DECRA 21 46 107 317

14 30 107 695

Optimized SLICINGLICING 20 40 82 163

20 44 94 169

POWEROWERSLICINGLICING 20 40 80 159

20 41 82 160

The upper row shows the true T2 values.

Fig. 1. The principle of slicing. A set of NMR relaxometry profiles (left figure) is held in a matrix with each row corresponding to one measurement.

This matrix is split so that the leftmost columns are in one table and the rightmost in another (upper right figure). These slices are generally

overlapping, and when the lag is one, the overlap is almost complete. The left slice has the original columns 1 to J � 1 and the right slice has columns

2 to J. The tables are put behind each other resulting in a three-way array (residual magnetization as a function of two time variables) which can be

modeled using PARAFAC (lower right figure).
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same as that of a discrete exponential-fitting algorithm,

fitting common characteristic time constants to a series of

samples [1]. However, in contrast to the curve fitting ap-

proach that is based on a hard modeling to a functional
form, the SLICINGLICING model is built on the use of highly

redundant datawhere it is the context (amongst the slices)

that determines the precise meaning. Extensive simula-

tions of TD-NMR data revealed that the SLICINGLICING ap-

proach was comparable, but not superior to a robust

classical numerical approach. However, the SLICINGLICING

approach has proven to be practically important, because

this algorithmutilizing highly redundant information and
requiring no initial value guesses provides rapid, non-it-

erative and unique solutions with perfect mono-expo-

nential loadings. The dramatically improved speed

(independent of number of components extracted) and

improved diagnostics (visual or numerical validation of

the appropriateness of the solution) of the SLICINGLICING al-

gorithm are its best attributes.

One potential problem with the SLICINGLICING algorithm is
the multiple choice situation of the two meta-parameters

lag and slab which in some cases significantly influences

the calculated T2-estimates. In our first report on the

SLICINGLICING algorithm, we investigated a number of different

choices including DECRA [2] slicing, a non-redundant

slicing scheme and a meta-parameter optimization ap-

proach. As exemplified in Table 1, the accuracy of the

time-constant estimates from a DECRA model and an
optimized SLICINGLICING model may differ considerably. Evi-

dently the optimized SLICINGLICING model provides the most

accurate results, but unfortunately the optimized SLIC-LIC-
INGING approach eliminates the speed advantage of the

SLICINGLICING methods. For this reason a SLICINGLICING scheme
that a priori is known to provide near-optimal results is

greatly desired. During theoretical investigations of our

SLICINGLICING algorithm we developed a slicing scheme which

performs near optimal for TD-NMR relaxation curves

and similar multi-exponential decay curves and which is

similar in accuracy to the optimized SLICINGLICING model and

which is superior in algorithmic speed, the latter being a

good indication of an optimal model.
2. PowerSlicing

The purpose of data slicing is to indirectly impose

exponential constraints by overlapping different parts of
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the signal. The goal is to use a data slicing method that
is optimal with respect to the accuracy of the solutions

provided. In practice, the true parameters are not

known and therefore the slicing method cannot be op-

timized specifically for each dataset, unless some derived

statistical model quality measure is used (as is the case

for Optimized SLICINGLICING). Even with a derived statistical

quality measure, the globally optimal solution to the

data slicing meta-parameter problem cannot be known
without exploiting the whole meta-parameter space

systematically. This is not realistic and will eliminate any

advantages that the SLICINGLICING method may have.

Several aspects of a specific slicing scheme will affect

the model quality.

1. An attractive representation with respect to SLICINGLICING

is a representation where the underlying decays are as

well spread as possible in both variable directions.
Mathematically, the selectivity of each exponential

should be as high as possible, which is obtained by

using short lags for fast decays and long lags for slow

decays.

2. The more (valid) constraints (lags and slabs) imposed,

the smaller the variance of the estimated parameters

will be.

The new, generally applicable SLICINGLICING model that we
propose is based on the fact that a slicing scheme can be

developed with non-equidistant lagging, as was also in-

vestigated in the previous investigation [1]. It is based on

the idea of obtaining a simple lagging scheme that im-

poses many direct exponential constraints amongst the

variables and the fact that the second �relaxation� di-
rection provides maximum contrast between possible

individual relaxation components while keeping the
number of slabs low. The new SLICINGLICING model uses a

lagging function of the form 2x (x ¼ 0; 1; . . . ;N ) for

which reason it is named POWEROWERSLICINGLICING. Using this

functional form, the resulting data matrix from one

random TD-NMR profile is shown in Fig. 2. The ad-

vantage of this lagging scheme is outlined below.

In order to demonstrate how POWEROWERSLICINGLICING works,

it is instructive to examine a small example. Let one
decay curve be represented by a vector x with index el-

ements numbered 1; 2; 3; . . . ; J . When this curve is sliced

once with a lag of one (DECRA), the resulting two-slab

matrix can be written as
1
 2
 3 4
 5
 6
 �
 � � J
 � 1
2
 3
 4 5
 6
 7
 �
 � � J
For more than one sample, a three-way array is ob-
tained. When modeling these data with SLICINGLICING, the

model imposes the constraint that both rows can be

described by the same exponential profiles (T2�s) up to a

scalar difference. Thus, for a one-component model,

SLICINGLICING defines that row one shown above can be ap-

proximated by a (J � 1)-vector b and therefore row two
as db where d is a constant. Thus, by lagging one,
SLICINGLICING directly imposes the exponential feature ex-

plained in Eq. (1) only for adjacent points in the TD-

NMR profile.

If a new slab is added which starts at element 3, we

obtain the following three-slab model:

Compared to the two-slab representation, the addi-

tion of one more slice introduces two explicit con-

straints. Row 1 versus row 3 imposes the exponential

constraint for points with lag 2 (e.g., element 1 versus 3

and element 2 versus 4). The second constraint imposed
between row 2 and row 3, however, is not active, because

it is identical to the constraint between row 1 and row 2.

As for the difference between row 1 and row 2, row 2

and row 3 only implies the exponential constraint be-

tween adjacent points. Therefore, the constraint leads to

overly redundant (thus computationally costly) data

representation without adding new restrictions.

Consider instead an alternative lagging (2x or
POWEROWERSLICINGLICING) where the third row starts at element 4

(22):

For this representation, the two new constraints im-
posed are between points with lag 2 (row 2 versus row 3)

and lag 3 (row 1 versus 3). As can be seen, this lagging

introduces truly new constraints. Adding such new

constraints is helpful in creating diversity in the row-

mode, which is one of the premises for successful

SLICINGLICING modeling.

Continuing the POWEROWERSLICINGLICING approach, a new

row starting at element 8 (23) again introducing only
truly new direct constraints:
1 2
 3
 4 5
 6
 � � � J
 � 7
2 3
 4
 5 6
 7
 � � � J
 � 6
4 5
 6
 7 8
 9
 � � � J
 � 4
8 9
 1
0
 11 1
2
 13
 J
From the example above it follows that an effective

and generally applicable lagging scheme can be ob-
tained by starting at elements 20, 21, 22, etc. This en-

sures that the exponential aspect is imposed as much as

possible in POWEROWERSLICINGLICING, using as few lagged slabs

as possible.



Fig. 2. Illustration of the digitized relaxometric data. (a) Digitizing the relaxometric profile, (b) the lagging scheme of the three first slices in

POWEROWERSLICINGLICING, and (c) an example of the resulting decay landscape of a single multi-exponential NMR profile.
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POWEROWERSLICINGLICING does not take into account all pos-

sible constraints. For example, the first exponential

constraint that is not directly imposed is between vari-

able J and J � 5. However, this constraint is indirectly

taken into account via the constraints between variables

J and J � 4 and between J � 4 and J � 5.

Having defined the POWEROWERSLICINGLICING lagging proce-

dure, the second problem is then the choice of the
number of slabs. It is possible to have lags as high as

J=2, whereas higher lags would be beyond the end of the

curve. Will there be an advantage in taking fewer slabs

than the maximal possible number? It is conjectured that

there is not. Fewer slabs may introduce less correlation

structure in the residuals and will further increase the

variance of the estimates, because more structure is

imposed. It is therefore suggested that the number of
slabs taken always be as high as possible. In Section 3,

this choice is verified empirically.
Fig. 3. Dispersion of T2 values found by POWEROWERSLICINGLICING (2x) as a

function of number of slabs (n ¼ 1; 2 . . . ; x). (a) SLICINGLICING with 2 slices

using the lags 0 and 20 (DECRA), (b) SLICINGLICING with 3 slices using the

lags 0, 20, and 21, (c) SLICINGLICING with 6 slices using the lags 0, 20, 21, 22,

23, and 24, (d) SLICINGLICING with 11 slices using the lags 0, 20, 21, 22, 23, 24,

25, 26, 27, 28, and 29 (POWEROWERSLICINGLICING), and (e) MATRIXATRIXFITIT.
3. Results

To test the POWEROWERSLICINGLICING technique we applied it

to a simulated NMR dataset of 30 samples with 2048
data points containing four underlying exponential

components interspaced with a factor of two and added

0.5% (of total sum of squares of the data) random noise.

This was repeated 3000 times using different random

noise in each case. First, the number of slabs to be used

was determined. Fig. 3 shows the result of using 2

(DECRA), 3, 6, and 11 slabs of the 2x lagging function,



Table 2

Linear regression correlation and cross-validated prediction perfor-

mance between fat content and the concentration vector best de-

scribing the fat content

Algorithm T 2

(ms)

# NoComp r2 RMSECV CPU

Multi-exponential

fitting

h247i 2 0.969 0.650 25.3

h424i 3 0.857 1.391 61.8

MATRIXATRIXFITIT 284 2 0.964 0.696 3.3

420 3 0.975 0.588 7.4

DECRA 295 2 0.964 0.699 1.7

182 3 0.969 0.651 2.2

POWEROWERSLICINGLICING 306 2 0.965 0.691 1.1

358 3 0.976 0.572 1.2

RMSECV: Root Mean Square Error of Cross-Validation.
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i.e., the last slab will be lagged by 1024 data points. Two
important observations may be deduced from the figure.

Most importantly, the dispersion of the T2-estimates is

monotonically reduced with the number of slabs used,

the maximum slab (11) POWEROWERSLICINGLICING being the best.

This type of data experiment suggests that the optimal

number of slabs, N , for the 2x lagging function is

2N 6 J=2, where J is the number of bins on the time axis.

This maximum model will from now on be labeled
POWEROWERSLICINGLICING. Second, POWEROWERSLICINGLICING turned out

to be the most efficient algorithm, which on average is a

factor of two faster than the slab 2 (or DECRA) model

and a factor of 6 faster than the traditional approach

implemented in the MATRIXATRIXFITIT algorithm [1], indicat-

ing a more optimal and convergent model.

Fig. 4 compares the performance of POWEROWERSLICINGLICING

to a traditional numerical approach MATRIXATRIXFITIT [1], the
previously introduced optimized SLICINGLICING [1] and DE-

CRA [2]. From the figure it is observed that the dispersion

of the calculated T2-estimates by POWEROWERSLICINGLICING is

comparable and even somewhat more narrower than the

results from the optimized SLICINGLICING; however, POWEROWER

SLICINGLICING remains a little less accurate in the T2-estimates

when compared to the MATRIXATRIXFITIT approach. When

examining the average algorithmic speed, the POWEROWER

SLICINGLICING outperforms the optimized SLICINGLICING by a factor
Fig. 4. Dispersion of T2 values found by (a) DECRA, (b) SLICINGLICINGOPTPT,

(c) POWEROWERSLICINGLICING, and (d) MATRIXATRIXFITIT. Note that there is no sig-

nificant bias in any of the estimates.
of approximately 300 and theMATRIXATRIXFITIT approach by a
factor of 6.

To test the validity of the POWEROWERSLICINGLICING approach

we applied it to a data set that consists of TD-NMR

measurements on 47 samples of minced meat with a total

fat content ranging from 1.2 to 15% (w/w) [4]. In this

experiment the standard pulsed field gradient stimulated

echo experiment was followed by the CPMG 180 � pulse
train. The samples were measured at 55 �C to ensure li-
quid fat phase and a total of 2048 even echoes were ac-

quired using a s of 500 ls. Prior to analysis the data were

phase corrected using principal phase correction (PPC)

[1], a necessary prerequisite for sound results. The results

of POWEROWERSLICINGLICING on this data set compared to the

three above-mentioned algorithms are presented in Ta-

ble 2. From the table it is observed that the quantitative

performance of the one-dimensional multi-exponential
fitting deteriorates when using more than two compo-

nents, while the performance of the two-dimensional

data technology approaches is improved when using

three components. Only insignificant differences are ob-

served between MATRIXATRIXFITIT and the POWEROWERSLICINGLICING,

whereas DECRA appears to perform inferiorly. More-

over, it is observed that the T2X time constant for the fat

component is relatively more stable in the
POWEROWERSLICINGLICING approach when increasing the model

complexity from two to three components, albeit a

considerable increase is observed. The CPU index clearly

demonstrates the main benefit of the POWEROWERSLICINGLICING.
4. Conclusion

We have previously proposed a new data technique

for simultaneous multi-exponential fitting of TD-NMR

relaxation curves called SLICINGLICING. The greatest virtues of

the SLICINGLICING method are that it is non-iterative and fast.

It provides unique solutions (for a predetermined num-

ber of components) in the mathematical sense and it



Communication / Journal of Magnetic Resonance 163 (2003) 192–197 197
requires no initial guesses. It also provides exploratory
tools that can help assess the validity of the solution. The

disadvantage of the originally proposed SLICINGLICING meth-

od was the lack of a generally applicable data slicing

scheme which made optimization of meta-parameters

necessary, which in turn eliminated the speed advantage.

In this study, we propose a generally applicable near-

optimal data slicing method called POWEROWERSLICINGLICING

which has proven to provide accurate and rapidly cal-
culated T2-estimates for both theoretical and experi-

mental data. The new data slicing method provides

considerably more robust estimates than any previously

proposed slicing scheme and we recommend that all

ongoing data slicing experiments use the new technique.
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